Model accuracy in the Bayesian optimization algorithm
نویسندگان
چکیده
Evolutionary algorithms (EAs) are particularly suited to solve problems for which there is not much information available. From this standpoint, estimation of distribution algorithms (EDAs), which guide the search by using probabilistic models of the population, have brought a new view to evolutionary computation. While solving a given problem with an EDA, the user has access to a set of models that reveal probabilistic dependencies between variables, an important source of information about the problem. However, as the complexity of the used models increases, the chance of overfitting and consequently reducing model interpretability, increases as well. This paper investigates the relationship between the probabilistic models learned by the Bayesian optimization algorithm (BOA) and the underlying problem structure. The purpose of the paper is threefold. First, model building in BOA is analyzed to understand how the problem structure is learned. Second, it is shown how the selection operator can lead to model overfitting in Bayesian EDAs. Third, the scoring metric that guides the search for an adequate model structure is modified to take into account the non-uniform distribution of the mating pool generated by tournament selection. Overall, this paper makes a contribution towards understanding and improving model accuracy in BOA, providing more interpretable models to assist efficiency enhancement techniques and human researchers.
منابع مشابه
Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm
Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...
متن کاملA Model for Tax Evasion Forcasting based on ID3 Algorithm and Bayesian Network
Nowadays, knowledge is a valuable and strategic source as well as an asset for evaluation and forecasting. Presenting these strategies in discovering corporate tax evasion has become an important topic today and various solutions have been proposed. In the past, various approaches to identify tax evasion and the like have been presented, but these methods have not been very accurate and the ove...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 15 شماره
صفحات -
تاریخ انتشار 2011